Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.487
Filtrar
1.
Nutrients ; 16(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542791

RESUMEN

BACKGROUND: The consumption of processed meats (PMs) and red meats are linked to the likelihood of developing colorectal cancer. Various theories have been proposed to explain this connection, focusing on nitrosyl-heme and heme iron intake. We hypothesized that differences in nitrosyl-heme and heme iron intakes will be associated with various sociodemographic and lifestyle factors. METHODS: The study included 38,471 healthy volunteers (62% females) from five Spanish regions within the EPIC-Spain cohort. High-Performance Liquid Chromatography (HPLC) determined nitrosyl-heme and heme iron levels in the 39 most consumed PMs. Food intake was assessed using validated questionnaires in interviews. Nitrosyl-heme and heme iron intakes, adjusted for sex, age, body mass index (BMI), center, and energy intake, were expressed as geometric means due to their skewed distribution. Variance analysis identified foods explaining the variability of nitrosyl-heme and heme iron intakes. RESULTS: The estimated intakes were 528.6 µg/day for nitrosyl-heme and 1676.2 µg/day for heme iron. Significant differences in nitrosyl-heme intake were found by sex, center, energy, and education level. Heme iron intake varied significantly by sex, center, energy, and smoking status. "Jamón serrano" and "jamón cocido/jamón de York" had the highest intake values, while "morcilla asturiana" and "sangrecilla" were key sources of nitrosyl-heme and heme iron. CONCLUSIONS: This is the first study to estimate levels of nitrosyl-heme intake directly in PMs for a large sample, revealing variations based on sex, BMI, smoking, and activity. Its data aids future exposure estimations in diverse populations.


Asunto(s)
Dieta , Hemo , Femenino , Humanos , Masculino , España , Carne/análisis , Hierro/análisis , Hierro de la Dieta
2.
Sci Total Environ ; 926: 171856, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522531

RESUMEN

Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Hierro/análisis , Suelo , Rizosfera
3.
Anal Chim Acta ; 1301: 342443, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38553117

RESUMEN

BACKGROUND: The determination of flavonoids in real sample using UV-Vis spectrophotometer commonly uses quercetin and catechin with Al+3 complexing agent as reference materials for the calibration of the instrument. However, getting these standard materials is challenging due to its expense and unavailability in the chemical reserve of the country. Moreover, the Al+3 - quercetin complexation standard method demands high amount of quercetin in spite of its high cost. Hence, developing alternative method that can solve this problem is crucial for the determination of flavonoids in the real sample. RESULTS: An iron-based complexation method for the determination of flavonoids in the real sample was developed that reduces the amount of quercetin by 200 times (1 mg/mL to 0.005 mg/mL) during the calibration of UV-Vis spectroscopy as an alternative method. The reaction parameters (incubation time, pH, and concentration of quercetin) were optimized using software Design Expert 11 and confirmed by the practical experiments. The kinetics of reaction between iron and quercetin was found to be pseudo first order with rate constant of kobs at 340 and 510 nm. The analysis window for the flavonoid complex was achieved with the kinetic discrimination of the interferences at its optimized time of complexation 20 min and absorbance maxima of 510 nm. The developed method was validated by evaluating its precision, accuracy, recovery test (84-117%), detection limit and quantification limit following the standard protocols. The calibration of the instrument has been developed for the new method and the linear regression coefficient (R2) of 0.998 was obtained. SIGNIFICANCE: Applying the developed standard material (Fe3+ - quercetin complex) gives freedom for the analytical chemists to find the standard materials that is accessible and cheaper than the existing one (Al3+-quercetin complex). The developed method can also be easily applied for determination of flavonoid in the real samples without potential interferences coming from sample matrix.


Asunto(s)
Flavonoides , Quercetina , Flavonoides/análisis , Quercetina/análisis , Hierro/análisis , Espectrofotometría
4.
Sci Total Environ ; 925: 171770, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499093

RESUMEN

The exploration of microbial resources to reduce Pb accumulation in rice attracted great attention. In this study, we found Penicillium oxalicum SL2, a Pb-tolerant strain with good capability of dissolving phosphorus and stabilizing Pb in soil, was able to colonize on the root surface of rice seedlings without additional carbon sources, and promoted the secretion of metabolites related to amino acid metabolism, organic acid metabolism, signal transduction and other pathways in rhizosphere exudates, in which the secretion of oxalate increased by 47.7 %. However, P. oxalicum SL2 increased Fe(II) proportion and Fe availability on the root surface, resulting in iron plaque content decrease. Moreover, by converting root surface Pb from Pb-Fe state to PbC2O4 and Pb-P compounds, P. oxalicum SL2 increased Pb intercept capacity of iron plaque by 118.0 %. Furthermore, P. oxalicum SL2 regulated element distribution on the root surface, and reduced the relative content of Pb on the maturation zone of root tip, which was conducive to reducing Pb uptake by apoplastic pathway and the risk of Pb accumulation in root system. Our findings further revealed the interaction between P. oxalicum SL2 and rice root, providing a theoretical basis for the development and application of microbial agents in Pb-contaminated farmland.


Asunto(s)
Oryza , Penicillium , Contaminantes del Suelo , Hierro/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Raíces de Plantas/metabolismo
5.
Sci Rep ; 14(1): 6548, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503859

RESUMEN

Trace metals are naturally occurring metals found in very small concentrations in the environment. In the context of fish flesh, metals such as copper, calcium, potassium, sodium, zinc, iron, and manganese are absorbed by fish and play vital roles in various physiological functions. However, if these metals exceed the recommended limits set by WHO/FAO, they are termed 'toxic metals' due to their harmful impacts on both the fish and its consumers. Therefore, the present study aims to analyze the levels of protein, lipids, and certain metals-Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Iron (Fe), Copper (Cu), Potassium (K), and Calcium (Ca) in three commercially important marine fishes i.e. Rastrelliger kanagurta, Sardinella abella, and Otolithes ruber. The study also aims to assess their potential impact on human health. The macro-Kjeldhal method and Soxhlet apparatus were used to estimate protein and lipid contents, while atomic absorption spectroscopy (AAS) was used to estimate trace metals found in fishes. The study found that these fish species are valuable sources of protein, lipids, and certain essential minerals. The protein content (CP) in these three species ranged from 63.35 to 86.57%, while lipid content was from 21.05 to 23.86%. The overall results of the trace metal concentrations analyzed in the present study revealed that Aluminum (Al), Sodium (Na), Zinc (Zn), Titanium (Ti), Copper (Cu), Potassium (K), and Calcium (Ca) were found in low concentration or traces and also within suitable ranges as set by WHO/FAO. However, Iron (Fe) was absent in all three species. Moreover, both copper and potassium were found in all three species, while Zinc was present in Rastrelliger kanagurta and Sardinella abella, calcium in Sardinella abella, and sodium in Otolithes ruber only. Titanium was recorded for the first time in S. abella. However, the total health risk assessment associated with these fish food consumption was measured by THQ and TTHQ and found to be less than 1, which shows no potential risk related to trace metals found in these fishes on human health upon their consumption. In conclusion, these commercially important marine fish species were found valuable sources of protein, lipids, and essential trace minerals that are necessary for human health. Thus, the current study provides useful information for the local population to make informed decisions about their daily diets and highlights the importance of sustainable fishing practices to maintain these valuable marine resources by periodical monitoring of their ecosystem.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Humanos , Animales , Oligoelementos/análisis , Cobre/análisis , Metales Pesados/análisis , Aluminio/análisis , Calcio/análisis , Titanio/análisis , Ecosistema , Monitoreo del Ambiente , Zinc/análisis , Hierro/análisis , Medición de Riesgo , Sodio/análisis , Potasio/análisis , Lípidos , Peces/metabolismo , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 923: 171543, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453068

RESUMEN

Straw returning is widely found elevating the bioavailability of cadmium (Cd) in paddy soils with unclear biogeochemical mechanisms. Here, a series of microcosm incubation experiments were conducted and spectroscopic and microscopic analyses were employed. The results showed that returning rice straw (RS) efficiently increased amorphous Fe and low crystalline Fe (II) to promote the production of hydroxyl radicals (OH) thus Cd availability in paddy soils during drainage. On the whole, RS increased OH and extractable Cd by 0.2-1.4 and 0.1-3.3 times, respectively. While the addition of RS effectively improved the oxidation rate of structural Fe (II) mineral (i.e., FeS) to enhance soil Cd activation (up to 38.5 %) induced by the increased OH (up to 69.2 %). Additionally, the existence of CO32- significantly increased the efficiency level on OH production and Cd activation, which was attributed to the improved reactivity of Fe (II) by CO32- in paddy soils. Conclusively, this study emphasizes risks of activating soil Cd induced by RS returning-derived OH, providing a new insight into evaluating the safety of straw recycling.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Hierro/análisis , Oryza/química , Radical Hidroxilo , Contaminantes del Suelo/análisis
7.
Water Res ; 254: 121412, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457944

RESUMEN

Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Humanos , Suelo/química , Humedales , Lignina , Minerales/química , Hierro/análisis , Agua/análisis , Fenoles/análisis , Compuestos Ferrosos , Carbono/química
8.
Ecotoxicol Environ Saf ; 274: 116210, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479311

RESUMEN

Thiosulfate influences the bioreduction and migration transformation of arsenic (As) and iron (Fe) in groundwater environments. The aim of this study was to investigate the impact of microbially-mediated sulfur cycling on the bioreduction and interaction of As and Fe. Microcosm experiments were conducted, including bioreduction of thiosulfate, As(V), and Fe(III) by Citrobacter sp. JH012-1, as well as the influence of thiosulfate input at different initial arsenate concentrations on the bioreduction of As(V) and Fe(III). The results demonstrate that Citrobacter sp. JH012-1 exhibited strong reduction capabilities for thiosulfate, As(V), and Fe(III). Improving thiosulfate level promoted the bioreduction of Fe(III) and As(V). When 0, 0.1, 0.5, and 1 mM thiosulfate were added, Fe(III) was completely reduced within 9 days, 3 days, 1 day, and 0.5 days, simultaneously, 72.8%, 82.2%, 85.5%, and 90.0% of As(V) were reduced, respectively. The products of As(III) binding with sulfide are controlled by the ratio of As-S. When the initial arsenate concentration was 0.025 mM, the addition of thiosulfate resulted in the accumulation of soluble thioarsenite. However, when the initial arsenate level increased to 1 mM, precipitates of orpiment or realgar were formed. In the presence of both arsenic and iron, As(V) significantly inhibits the bioreduction of Fe(III). Under the concentrations of 0, 0.025, and 1 mM As(V), the reduction rates of Fe(III) were 100%, 91%, and 83%, respectively. In this scenario, the sulfide produced by thiosulfate reduction tends to bind with Fe(II) rather than As(III). Therefore, the competition of arsenic-iron and thiosulfate concentration should be considered to study the impact of thiosulfate on arsenic and iron migration and transformation in groundwater.


Asunto(s)
Arsénico , Agua Subterránea , Hierro/análisis , Arsénico/metabolismo , Arseniatos , Tiosulfatos , Oxidación-Reducción , Sulfuros , Compuestos Férricos/metabolismo
9.
Ecotoxicol Environ Saf ; 274: 116219, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492483

RESUMEN

Cadmium (Cd) is one of the most toxic elements in soil, affecting morphological, physiological, and biochemical processes in plants. Mineral plant nutrition was tested as an effective approach to mitigate Cd stress in several crop species. In this regard, the present study aimed to elucidate how different phosphorus (P) fertilization regimes can improve some bio-physiological processes in tomato plants exposed to Cd stress. In a hydroponic experiment, the impact of two phosphorus fertilizer forms (Polyphosphate (poly-P): condensed P-form with 100% polymerization rate and orthophosphate (ortho-P): from orthophosphoric acid) on the photosynthetic activity, plant growth, and nutrient uptake was assessed under three levels of Cd stress (0, 12, and 25 µM of CdCl2). The obtained results confirmed the negative effects of Cd stress on the chlorophyll content and the efficiency of the photosynthesis machinery. The application of poly-P fertilizer significantly improved the chlorophyll stability index (82%) under medium Cd stress (Cd12), as compared to the ortho-P form (55%). The analysis of the chlorophyll α fluorescence transient curve revealed that the amplitude of Cd effect on the different steps of electron transfer between PSII and PSI was significantly reduced under the poly-P fertilization regime compared to ortho-P, especially under Cd12. The evaluation of the RE0/RC parameter showed that the electron flux reducing end electron acceptors at the PSI acceptor side per reaction center was significantly improved in the poly-P treatment by 42% under Cd12 compared to the ortho-P treatment. Moreover, the use of poly-P fertilizer enhanced iron uptake and its stoichiometric homeostasis in the shoot tissue which maintained an adequate absorption of iron under Cd stress conditions. Findings from this study revealed for the first time that inorganic polyphosphate fertilizers can reduce Cd toxicity in tomato plants by enhancing photosynthesis activity, nutrient uptake, plant growth, and biomass accumulation despite the high level of cadmium accumulation in shoot tissues.


Asunto(s)
Contaminantes del Suelo , Solanum lycopersicum , Cadmio/análisis , Polifosfatos/farmacología , Fertilizantes/análisis , Fotosíntesis , Clorofila/análisis , Plantas , Hierro/análisis , Fósforo/farmacología , Fertilización , Contaminantes del Suelo/análisis
10.
Nutrients ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542681

RESUMEN

Preeclampsia is a primary placental disorder, with impaired placental vascularization leading to uteroplacental hypoperfusion. We aimed to investigate differences in metal and metalloid content between the placentas of women with preeclampsia and healthy controls. This was a case-control study in 63 women with preeclampsia and 113 healthy women. Clinical data were obtained from medical records. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the placental metals and metalloids content. Compared with healthy control subjects, preeclampsia was associated with a significantly lower concentration of essential elements (magnesium, calcium, iron, copper, zinc, and selenium) in the placental tissue. After multivariable adjustment, an interquartile range (IQR) increase in selenium concentration was associated with a reduced risk of preeclampsia with an OR of 0.50 (95% CI: 0.33-0.77). The joint effects of multiple selected metals and metalloids were associated with a reduced risk of preeclampsia. The lower placental magnesium, chromium, iron, zinc, and selenium concentrations of preeclampsia cases indicate a potential link to its pathogenesis. It also provides an intriguing avenue for future research in revealing the underlying mechanisms and potential intervention strategies for preeclampsia.


Asunto(s)
Metaloides , Preeclampsia , Selenio , Embarazo , Femenino , Humanos , Placenta/química , Metaloides/análisis , Estudios de Casos y Controles , Magnesio/análisis , Zinc , Hierro/análisis
11.
J Environ Manage ; 356: 120559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471324

RESUMEN

In November 2015, a catastrophic rupture of the Fundão dam in Mariana (Brazil), resulted in extensive socio-economic and environmental repercussions that persist to this day. In response, several reforestation programs were initiated to remediate the impacted regions. However, accurately assessing soil health in these areas is a complex endeavor. This study employs machine learning techniques to predict soil quality indicators that effectively differentiate between the stages of recovery in these areas. For this, a comprehensive set of soil parameters, encompassing 3 biological, 16 chemical, and 3 physical parameters, were evaluated for samples exposed to mining tailings and those unaffected, totaling 81 and 6 samples, respectively, which were evaluated over 2 years. The most robust model was the decision tree with a restriction of fewer levels to simplify the tree structure. In this model, Cation Exchange Capacity (CEC), Microbial Biomass Carbon (MBC), Base Saturation (BS), and Effective Cation Exchange Capacity (eCEC) emerged as the most pivotal factors influencing model fitting. This model achieved an accuracy score of 92% during training and 93% during testing for determining stages of recovery. The model developed in this study has the potential to revolutionize the monitoring efforts conducted by regulatory agencies in these regions. By reducing the number of parameters that necessitate evaluation, this enhanced efficiency promises to expedite recovery monitoring, simultaneously enhancing cost-effectiveness while upholding the analytical rigor of assessments.


Asunto(s)
Ecosistema , Compuestos de Hierro , Suelo/química , Monitoreo del Ambiente , Minería , Brasil , Hierro/análisis , Cationes , Ríos/química
12.
Environ Monit Assess ; 196(4): 385, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507123

RESUMEN

Soil quality monitoring in mining rehabilitation areas is a crucial step to validate the effectiveness of the adopted recovery strategy, especially in critical areas for environmental conservation, such as the Brazilian Amazon. The use of portable X-ray fluorescence (pXRF) spectrometry allows a rapid quantification of several soil chemical elements, with low cost and without residue generation, being an alternative for clean and accurate environmental monitoring. Thus, this work aimed to assess soil quality in mining areas with different stages of environmental rehabilitation based on predictions of soil fertility properties through pXRF along with four machine learning algorithms (projection pursuit regression, PPR; support vector machine, SVM; cubist regression, CR; and random forest, RF) in the Eastern Brazilian Amazon. Sandstone and iron mines in different chronological stages of rehabilitation (initial, intermediate, and advanced) were evaluated, in addition to non-rehabilitated and native forest areas. A total of 81 soil samples (26 from sandstone mine and 55 from iron mine) were analyzed by both traditional wet-chemistry methods and pXRF. The available/exchangeable contents of K, Ca, B, Fe, and Al, in addition to H+Al, cation exchange capacity at pH = 7, Al saturation, soil organic matter, pH, sum of bases, base saturation, clay, and sand were accurately predicted (R2 > 0.70) using pXRF data, with emphasis on the prediction of Fe (R2 = 0.93), clay content (R2 = 0.81), H+Al (R2 = 0.81), and K+ (R2 = 0.85). The best predictive models were developed by RF and CR (86%) and when considering pXRF data + mining area + stage of rehabilitation (73%). The results highlight the potential of pXRF to accurately assess soil properties in environmental rehabilitation areas in the Amazon region (yet scarcely evaluated under this approach), promoting a more agile and cheaper preliminary diagnosis compared to traditional methods.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Arcilla , Brasil , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Hierro/análisis
13.
Environ Pollut ; 346: 123593, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367688

RESUMEN

The effects of adding green-synthesized magnetic iron-containing nanoparticles (GSMFe) onto biochar in aqueous solution for the adsorptive removal of hexavalent chromium [Cr(VI)] were investigated in this study. Nanocomposites, denoted as green synthesis magnetic biochar (GSMB), were created using a green synthesis technique with white tea residue to introduce GSMFe into biochar. Six adsorbents, varying in GSMFe content, were tested for their effectiveness in eliminating Cr(VI), a globally significant hazardous heavy metal. The results demonstrated that incorporating GSMFe into biochar led to significant improvements in adsorption capacity and saturation magnetization. With an increasing amount of GSMFe, the maximum adsorption capacity increased from 2.47 mg/g (EWTWB) to 9.11 mg/g (GSMB4). The highest saturation magnetization was achieved at 13.4 Am2/kg at GSMB4. Similarly, surface areas rose up to 72.9 m2/g at GSMB3 but declined thereafter due to GSMFe aggregation and pore blockage. Sorption behavior for Cr(VI) was assessed using five isotherm models, with the Redlich-Peterson model showing the best fit. The analysis of approximate site energy distribution (SED) indicates that the incorporation of GSMFe enhances the frequency of the entire range of sorption energy sites, while the biochar matrix contributes to a slight increase in medium sorption energy sites within the GSMFe. Among the GSMBs, the difference were more pronounced at low-energy sites than at high-energy sites. At higher energy sites (27,500-40,000 J/mol), sorption site frequencies remained similar, regardless of GSMFe content and associated physicochemical properties. For sorption energy site values exceeding 17,500 J/mol (Cr(VI) concentration below 50 mg/L), GSMB2 is regarded as a more practical choice due to its relatively large area under the frequency distribution curve and commendable cost-effectiveness.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Hierro/análisis , Contaminantes Químicos del Agua/análisis , Cromo/química , Carbón Orgánico/química , Agua , Fenómenos Magnéticos , Cinética
14.
Luminescence ; 39(3): e4694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38414310

RESUMEN

Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.


Asunto(s)
Compuestos de Bifenilo , Colorantes Fluorescentes , Hierro , Hierro/análisis , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Iones/química , Protones , Cationes , Naftalenos , Imidazoles/química
15.
J Hazard Mater ; 466: 133655, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310843

RESUMEN

The extensive use of plastics has given rise to microplastics, a novel environmental contaminant that has sparked considerable ecological and environmental concerns. Biodegradation offers a more environmentally friendly approach to eliminating microplastics, but their degradation by marine microbial communities has received little attention. In this study, we used iron-enhanced marine sediment to augment the natural bacterial community and facilitate the decomposition of polyethylene (PE) microplastics. The introduction of iron-enhanced sediment engendered an augmented bacterial biofilm formation on the surface of polyethylene (PE), thereby leading to a more pronounced degradation effect. This novel observation has been ascribed to the oxidative stress-induced generation of a variety of oxygenated functional groups, including hydroxyl (-OH), carbonyl (-CO), and ether (-C-O) moieties, within the microplastic substrate. The analysis of succession in the community structure of sediment bacteria during the degradation phase disclosed that Acinetobacter and Pseudomonas emerged as the principal bacterial players in PE degradation. These taxa were directly implicated in oxidative metabolic pathways facilitated by diverse oxidase enzymes under iron-facilitated conditions. The present study highlights bacterial community succession as a new pivotal factor influencing the complex biodegradation dynamics of polyethylene (PE) microplastics. This investigation also reveals, for the first time, a unique degradation pathway for PE microplastics orchestrated by the multifaceted marine sediment microbiota. These novel insights shed light on the unique functional capabilities and internal biochemical mechanisms employed by the marine sediment microbiota in effectively degrading polyethylene microplastics.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos/farmacología , Plásticos/análisis , Polietileno/farmacología , Hierro/análisis , Contaminantes Químicos del Agua/análisis , Bacterias , Sedimentos Geológicos/microbiología , Redes y Vías Metabólicas
16.
Environ Sci Pollut Res Int ; 31(13): 19795-19814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367113

RESUMEN

Mill scale (MS) is considered to be a significant metallurgical waste, but there is no economical method yet to utilize its metal content. In this study, which covers various processes in several stages, the solution of iron in MS, which is the Iron and Steel Industry (I&SI) waste, as FeCl3 (MS-FeCl3) in the thermoreactor in the presence of HCl, was investigated. In the next step, the conditions for using this solution as a coagulant in the treatment of I&SI wastewater were investigated using the jar test. The results of the treated water sample were compared by chemical oxygen demand (COD), total suspended solids (TSS), color, and turbidity analyses using commercial aluminum sulfate (Al2(SO4)3) and FeCl3 (C-FeCl3). Additionally, heavy metal analyses were conducted, and the treatment performance of three coagulants was presented. Accordingly, while 2.0 mg/L anionic polyelectrolyte was consumed at a dosage of 4.05 mg/L Al2(SO4)3 at pH 7.0, 0.25 mg/L anionic polyelectrolyte was consumed at a dosage of 1.29 mg/L at pH 5.0 in the C-FeCl3 and MS-FeCl3 studies. Also, Fe, Cr, Mn, Ni, Zn, Cd, Hg, and Pb removal efficiencies were over 93.56% for all three coagulant usage cases. The results showed that the wastewater treatment performance of MS-FeCl3 by the recycling of MS, which is an I&SI waste, was at the same level as C-FeCl3. Thus, thanks to recycling, waste scale can be used as an alternative to commercial products for green production.


Asunto(s)
Cloruros , Compuestos Férricos , Contaminantes Químicos del Agua , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Hierro/análisis , Residuos Industriales/análisis , Polielectrolitos , Floculación , Contaminantes Químicos del Agua/análisis
17.
Environ Pollut ; 345: 123496, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316253

RESUMEN

Straw returning is a crucial agronomic practice in fields due to its various benefits. However, effects and mechanisms of straw with different fermentation degrees on Se and Cd bioavailability have not been sufficiently investigated. In this study, straw with different fermentation degrees were applied to a Cd-contaminated seleniferous soil to investigate their effects on Se and Cd bioavailability. Results revealed that the effects of straw application on Se/Cd bioavailability in soil depended on the fermentation degrees of straw. Both original and slightly fermented straw had pronounced impacts on microbial iron reduction compared to fully fermented straw, and thus led to a significant increase in Se and Cd bioavailability. The linear discriminant analysis effect size (LEfSe) showed that norank_f_Symbiobacteraceae, Micromonospora, WCHB1-32, Ruminiclostrdium, and Cellulomonas were the major biomarkers at genus level in straw application soils, additional network analysis and random forest analysis suggested that Ruminiclostrdium and Cellulomonas might be implicated in microbial iron reduction. Furthermore, the microbial iron reduction had negative effects on mineral-associated Se with coefficient of -0.81 and positive effects on mineral-associated Cd with coefficient of 0.72, while Mn fractions exhibited positive effects on mineral-associated Se with a coefficient of 0.53 and negative effects on mineral-associated Cd. In conclusion, straw with different fermentation degrees governed Se and Cd mobility by regulating abundance of Ruminiclostrdium and Cellulomonas, subsequently affecting Fe and Mn fractions and consequently influencing Se and Cd bioavailability.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Disponibilidad Biológica , Fermentación , Contaminantes del Suelo/análisis , Suelo , Minerales , Hierro/análisis
18.
Bioelectrochemistry ; 157: 108660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301292

RESUMEN

At present, the all-iron redox flow batteries (RFBs) have greater application potential due to high accessibility of electrolytes compared to traditional RFBs. Meanwhile, although electroactive bacteria can accelerate the electrons transfer, their potential to improve the performance of RFBs has been overlooked. Previously, we had confirmed that ferrous-oxidizing bacteria (FeOB) could enhance the performance of an all-iron RFB, therefore we conducted several batch experiments and chronopotentiometry experiments by using the ferric-reducing bacteria (FeRB) or mixed culture (FeOB and FeRB) to demonstrate whether they have the same or stronger effects on Fe3+-DTPA/Na4[Fe(CN)6] RFB. The results showed that the experimental reactors could achieve higher charging current density and initial cathodic potential during constant voltage charging process. The electrochemical impedance spectroscopy data and cyclic voltammetry curves demonstrated that the polarization impedance increased slower and reduction peak potential of experimental groups also emerged a positive shift compared to CK. According to chronopotentiometry experiments results, the microbes could function at maximum 0.3 M, 12 mA/cm2, and also improved the charging specific capacity. Combined the SEM pictures and microbial composition analysis, the main functional electroactive FeRB were Alcaligenes, Corynebacterium and Bacillus, which indicated to have important potential in improving the performance of RFBs.


Asunto(s)
Bacillus , Hierro , Hierro/análisis , Bacterias , Oxidación-Reducción , Alcaligenes
19.
Sci Total Environ ; 922: 171217, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417521

RESUMEN

This paper explores the potential of Technosols made from non-hazardous industrial wastes as a sustainable solution for highly acidic iron-rich soils at the Rio Tinto mining site (Spain), a terrestrial Mars analog. These mine soils exhibit extreme acidity (pHH2O = 2.1-3.0), low nutrient availability (non-acid cation saturation < 20 %), and high levels of Pb (3420 mg kg-1), Cu (504 mg kg-1), Zn (415 mg kg-1), and As (319 mg kg-1), hindering plant growth and ecosystem restoration. To address these challenges, the study systematically analyzed selected waste materials, formulated them into Technosols, and conducted a four-month pot trial to evaluate the growth of Brassica juncea under greenhouse conditions. Technosols were tailored by adding varying weight percentages of waste amendments into the mine Technosol, specifically 10 %, 25 %, and 50 %. The waste amendments comprised a blend of organic waste (water clarification sludge, WCS) and inorganic wastes (white steel slag, WSS; and furnace iron slag, FIS). The formulations included: (T0) exclusively mine Technosol (control); (T1) 60 % WCS + 40 % WSS; (T2) 60 % WCS + 40 % FIS; and (T3) 50 % WCS + 16.66 % WSS + 33.33 % FIS. The analyses covered leachate quality, soil pore water chemistry, and plant response (germination and survival rates, plant height, and leaf number). Results revealed a significant reduction in leachable contaminant concentrations, with Pb (26.16 mg kg-1), Zn (4.94 mg kg-1), and Cu (2.29 mg kg-1) dropping to negligible levels and shifting towards less toxic species. These changes improved soil conditions, promoting seed germination and seedling growth. Among the formulations tested, Technosol T1 showed promise in overcoming mine soil limitations, enhancing plant adaptation, buffering against acidification, and stabilizing contaminants through precipitation and adsorption mechanisms. The paper stresses the importance of tailoring waste amendments to specific soil conditions, and highlights the broader implications of the Technosol approach, such as waste valorization, soil stabilization, and insights for Brassica juncea growth in extreme environments, including Martian soil simulants.


Asunto(s)
Marte , Contaminantes del Suelo , Hierro/análisis , Suelo , Ecosistema , Medio Ambiente Extraterrestre , Plomo/análisis , Plantas , Agua/análisis , Contaminantes del Suelo/análisis
20.
Water Res ; 253: 121345, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394932

RESUMEN

Since the discovery of multicellular cable bacteria in marine sediments in 2012, they have attracted widespread attention and interest due to their unprecedented ability to generate and transport electrical currents over centimeter-scale long-range distances. The cosmopolitan distribution of cable bacteria in both marine and freshwater systems, along with their substantial impact on local biogeochemistry, has uncovered their important role in element cycling and ecosystem functioning of aquatic environments. Considerable research efforts have been devoted to the potential utilization of cable bacteria for various water management purposes during the past few years. However, there lacks a critical summary on the advances and contributions of cable bacteria to biogeochemical cycles and water environment restoration. This review aims to provide an up-to-date and comprehensive overview of the current research on cable bacteria, with a particular view on their participation in aquatic biogeochemical cycles and promising applications in water environment restoration. It systematically analyzes (i) the global distribution of cable bacteria in aquatic ecosystems and the major environmental factors affecting their survival, diversity, and composition, (ii) the interactive associations between cable bacteria and other microorganisms as well as aquatic plants and infauna, (iii) the underlying role of cable bacteria in sedimentary biogeochemical cycling of essential elements including but not limited to sulfur, iron, phosphorus, and nitrogen, (iv) the practical explorations of cable bacteria for water pollution control, greenhouse gas emission reduction, aquatic ecological environment restoration, as well as possible combinations with other water remediation technologies. It is believed to give a step-by-step introduction to progress on cable bacteria, highlight key findings, opportunities and challenges of using cable bacteria for water environment restoration, and propose directions for further exploration.


Asunto(s)
Bacterias , Ecosistema , Oxidación-Reducción , Hierro/análisis , Agua , Sedimentos Geológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...